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We present a set of coupled nonlinear stochastic equations in one space dimension, designed to model
the surface of an evolving sandpile. These include nonlinear couplings to represent the constant transfer
between relatively immobile clusters and mobile grains, incorporate the presence of tilt, and contain rep-
resentations of inertia and evolving configurational disorder. The critical behavior of these phenomeno-
logical equations is investigated numerically. It is found to be diverse, in the sense that different com-
binations of noise as well as different symmetries lead to nontrivial exponents. In the cases most directly
comparable with previous studies, we find that our equations lead to a surface with a roughness exponent
a~0.40, to be compared with the Edwards-Wilkinson and Kardar-Parisi-Zhang values, namely

a®¥=1 and a®"*=1, respectively. This is, in our view, directly due to the effect of the tilt term. Final-
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ly we discuss our results, as well as possible modifications to our equations.

PACS number(s): 05.40.+j, 05.70.Ln, 46.10.+z, 64.60.Ht

I. INTRODUCTION

There has been a great deal of recent interest in the
physics of sandpiles [1-3], and the complexity of these
systems has made them a subject of deep fascination for
theoretical physicists in particular. However, well before
the current upsurge of interest in sandpiles, there were at-
tempts to model evolving interfaces, such as those in col-
loidal aggregates or solidification fronts [4]. In all these
models, the basic picture was of particle deposition on a
rough surface, described by a height h(x,?). The growth
of the interface in response to the rearrangement or
amplification of local heights was modeled to varying de-
grees of complexity via Langevin equations for the
height, with the noise term representing the effect of the
external perturbation.

Most of these models exhibit critical behavior, in the
sense that their long-distance physics obeys scaling laws,
often referred to as self-organized criticality (SOC) [5].
Three critical exponents a, 3, and z characterize the spa-
tial and temporal behavior of a rough interface. They are
conveniently defined by considering the connected two-
point correlation function of the heights, namely
G(x—x',t—t)=(h(x,t)h(x',t')) —(h(x,2))(h(x',t")).
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We have
G(x,0)~|x|** (|x|—> ),
(1.1)
G(0,t)~[t|* (lt| > ),
and, more generally
G(x,t)=|x|?**F(|t|/|x|?) (1.2)

in the whole long-distance scaling regime (x and ¢ large).
The scaling function F is universal; @ and z=a/f, re-
spectively, are referred to as the roughness exponent and
the dynamical exponent of the problem.

The first of these approaches was due to Edwards and
Wilkinson [6] (EW), and involved a purely diffusive
mechanism for the relaxation of the surface. This linear
problem is easily solved in any space dimension d. It is
critical for d <2, where a=28=1—d /2, and z=2. Kar-
dar, Parisi, and Zhang [7] suggested that a form of the
Burgers equation [8] was a more appropriate representa-
tion, and suggested that the lowest order nonlinear term
to be added to the EW equation was a term (Vh )2
representing lateral growth. The full Kardar-Parisi-
Zhang (KPZ) equation is recalled hereafter in Eq. (3.1);
the EW equation is obtained by setting g =0 in the KPZ
equation.

The solution of the KPZ equation has been an ongoing
problem in theoretical physics, which has been tackled by
means of a wide variety of approaches, overviewed in the
recent reviews [9,10]. Its critical exponents seem to be
nontrivial in any dimension. They are known exactly in
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1+1 dimensions: =1, =1, and z =4, but only approx-
imately in higher dimensions; they obey the relation
a-+z=2. Successful attempts to obtain crossovers away
from EW and KPZ equations have been rare, and it has
usually been necessary to add complicated terms in order
to achieve this; an example of this can be found in the
work of Maritan et al. [11], which comprises relativistic
invariance under reparametrization and leads to a cross-
over away from KPZ exponents in the long-time limit.

More recently, there have been attempts directed
specifically at understanding sandpile avalanches; howev-
er, these approaches start from general considerations of
symmetry rather than from specific physical considera-
tions germane to sandpiles. Examples of such approaches
are those due to Hwa and Kardar [12] and Grinstein and
Lee [13]; the approach of Toner [14] is built on the latter
to include a representation of disorder.

All the above approaches are unified by the fact that
they involve only one variable, the local height of the sur-
face h(x,t), rather than any form of coupling between the
moving grains and the relatively immobile clusters which
has been shown [15] to be necessary for the understand-
ing of the sandpile surfaces. This coupling was included
by Mehta, Needs, and Dattagupta [16], albeit at a rela-
tively macroscopic level in the first instance; the coordi-
nates in the resulting Langevin equations were respective-
ly the macroscopic angle of tilt 6 (which is affected by the
motion of independent particles) and an average rough-
ness of slope ¢ with respect to this (which represents the
average extent to which clusters protrude from the sur-
face). This theory was able to provide a realization of di-
latancy [17] and hysteresis, to interpolate via effective
temperatures between different dynamical regimes, and
provided good agreement with experiment [18].

On the other hand, the role of evolving configurational
disorder was investigated by Mehta and Barker [19] via a
cellular-automaton model; this work emphasized the
need for a representation of an exchange between clusters
and grains in any realistic microscopic models of sand-
piles, demonstrated, via a simple model of cluster reor-
ganization, the link between surface and bulk in
avalanche formation, and finally showed the hysteretic
behavior characteristic of these systems. Concurrently,
another sandpile cellular automaton designed by the
same authors [20] to model a sandpile subjected to con-
stant tilt in a rotating cylinder showed the effects of dissi-
pation and inertia, and demonstrated the (intuitively ob-
vious) role of tilt in generating moving grains from
erstwhile frozen clusters.

All these ingredients were included in a more local ap-
proach to sandpile dynamics, still containing the crucial
nonlinear coupling between moving clusters and grains
mentioned above; the equations representing this were
first presented in Ref. [1], and their analysis forms the
subject of this paper. The effective coordinate represent-
ing clusters at a microscopic level is clearly the local
height A(x,t), since the geometric fluctuations of clusters
are manifested by variations in A(x,?); this is related to
the variable ¢ in earlier work [16], while the macroscopic
slope in that work has a more microscopic incarnation
here in terms of a local density p(x,?) of mobile particles.
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In a sandpile submitted to stirring, shaking, or pouring,
these coordinates will clearly be coupled. In Ref. [1] we
introduced a particular set of terms to reflect the physical
processes at work in the grain-cluster coupling [see Egs.
(2.2) and (2.3) below]. Later, another group [21] analyzed
a special case of our equations; these were obtained by
setting D, A, and v to zero in Egs. (2.2) and (2.3) below,
and consequently contained different physics. This
difference is mirrored in their results which do not,
among other things, include crossovers to regimes
characterized by new and nontrivial critical exponents.

In this paper we analyze our original equations, as well
as several generalizations of them, to incorporate the
effects of different symmetries and different noise terms.
The plan of this paper is as follows: we present our
dynamical equations in Sec. II, and discuss the various
terms in them. In Sec. III, we discuss the effect of
differing physical constraints and their accompanying
modifications to the form of our equations, and quantify
all this with numerical evidence, concerning especially
their critical behavior. Finally, in Sec. IV we discuss our
results.

II. GENERALITIES

The stochastic dynamical equations investigated in the
present work are a generalization of those introduced in
Ref. [1]. They concern a one-dimensional sandpile, de-
scribed by two coupled variables as follows: h(x,t)
represents the profile of relatively immobile material,
measured from a fixed negative critical slope —p.. In
other words the actual height of immobile particles above
a horizontal reference line reads

yix,t)=—p.x+h(x,t), (2.1)

whereas p(x,t) represents the density of the layer of mov-
ing particles.

The dynamical equations have the following general
form:

dh /3t=D,V*h —T+n,(x,t) , (2.2a)

3p/dt=—Vj+D,Vp+T+n,(x1) . (2.2b)

For the time being, and along the lines of Ref. [1], we set

T=—kpV*h—Ap(Vh), —upVh —w(Vh)_ (2.3)
and
j=—vp(Vh)_ . (2.4)
We have introduced the notations V=42/dx, and
z forz=0 0 forz=0
z+=lo for z<0, 2=~ |z for z<0. 2.5)

The content of our dynamical equations is as follows.

(i) The first term on the right hand side of Eq. (2.2a) is
an EW term and represents the rearrangement of clusters
in the presence of an applied noise; the associated cou-
pling D, is a diffusivity. This corresponds to collective
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relaxation [15], denotes strictly intracluster motion, and
exists in the quasistatic as well as grain-inertial regimes
[1]. Although this term does not lead to dramatic
changes in the analysis of our equations, its physical im-
portance cannot be underestimated. The absence of this
term would lead to an unphysical situation in the limit
T=0, when there are no flowing grains; the clusters
would be configurationally frozen, and a vibrated sand-
pile (finite noise in 4) would have no means of relaxation.
This is clearly inappropriate, given that clusters have
been observed to rearrange [1-3] under conditions of
low-intensity vibration even when no mobile grains flow
down the pile; in fact this process of cluster rearrange-
ment at low vibrational intensities provides a mechanism
for collective relaxation, and has been shown [15,22] to
be crucial for the compaction of a pile to high densities.

(ii) The second block of terms, 7T, represents the
transfer of clusters to flowing grains, and vice versa. This
transfer process has been shown to be crucial [19,20] to
sandpile dynamics, and includes representations of evolv-
ing disorder and inertia. Included in T are the following
terms.

(a) The term kpV>h represents intercluster motion ini-
tiated by the flowing grains. The essential difference be-
tween this term and the diffusive term for A is that,
whereas this mechanism stops in the absence of
avalanches, the diffusive process continues even in this
limit. We visualize this as being due to a current of
grains moving down the slope, knocking out bumps and
filling in holes, so that it is a term that can exist in the
grain-inertial regimes but not in the quasistatic one.
Note that this is a representation of inertia [20], since it is
a mechanism for amplifying sandpile avalanches indepen-
dently of slope.

(b) The term upVh also represents intercluster motion
of grains, which is mediated by the motion of grains mov-
ing independently of each other down the slope [15].
Thus a current of grains moves down the slope, accumu-
lating at points of low slope and knocking out grains
from regions of large slope. Also, where as kpV?h
smooths out bumps and dips on the pile irrespective of
slope, the upVh term exists purely to smooth out devia-
tions from the critical slope. This slope dependence al-
lows us to view this term as a representation of evolving
configurational disorder and memory [19]; thus an overly
bumpy section of this pile (large deviation from critical
slope) will lead to a large avalanche even if a very few
grains (small p) hit it.

(c) The term v(Vh)_ represents the spontaneous gen-
eration of flowing grains whenever the local slope is
larger than critical; this exists even in the absence of flow-
ing grains and is meant to represent the effect of tilting a
stationary sandpile. Note that, because we have chosen
the critical slope to be negative by definition, a negative
sign of VA implies that the overall slope is steeper than
critical. This term is a simple representation of a crucial-
ly important effect in sandpile dynamics, and, as we will
see below, is in large part responsible for the novelty of
our model from the viewpoint of critical phenomena.
However, we emphasize here that in its absence a noise-
less (undeposited) pile subjected to slow tilt would stay

frozen. Its physics is therefore crucial, in that it is able to
reproduce the everyday phenomenon whereby an origi-
nally static pile, when tilted, generates mobile (flowing)
grains.

(d) The term Ap(Vh ), can be viewed as a crude repre-
sentation of the effect of the boundary layer (whose width
represents the maximal range for cluster-grain exchange
to occur) [1] since its action is to limit the release of flow-
ing grains generated by the effect of tilt; it thus acts as a
regulator on the generation of mobile grains. While there
is in principle no restriction on the amount of p (up to the
size of the pile) that can be generated in a real sandpile
subjected to tilting or applied noise, we restrict ourselves
to the situation where tilting is a moderate perturbation,
and only grains occupying the boundary layer can be li-
berated to flow down the pile via the h-p conversion in
the tilt term. After a short transient the system relaxes to
a stationary state where {(9p/dt)=0. We thus have
(p)~v/A finite at saturation. This makes quantities
such as 4 and p, as well as their fluctuations, finite and
measurable, which is essential for the numerical simula-
tions described hereafter. Hence A plays the role of an
experimental (and numerical) cutoff: we replicate existing
experimental approaches [3] where vibration and/or tilt
are perturbations rather than catastrophes, and it is
mainly the boundary layer that is affected by these [2].

(iii) The first term in Eq. (2.2b), —Vj, represents the
variation in p due to the nonuniformity of the current of
flowing grains, in such a way that the total number of
particles is conserved. The current j(x,¢) is proportional
to the number of mobile grains and to their velocity; the
latter is assumed to vanish for slopes greater than critical,
and to be proportional to the driving field which is the
magnitude of the local slope, from which we derive ex-
pression (2.4), the associated parameter ¥ being a mobili-
ty.

(iv) The second term in Eq. (2.2b), V?p, represents the
relaxation of the flowing grains, and is a crude way of
representing intergrain collisions. The coupling D, is
again a diffusivity.

(v) Finally, to a discussion of the source terms 7, (x,?)
and 7,(x,7). They will depend on the physical situation
under consideration. We shall often take them as two in-
dependent Gaussian white noises, characterized by their
widths A, A, defined according to

(0 (6, ), (x,8") ) =A%8(x —x")8(¢ —1t'), 0.6
(mp(x,0m(x",2")) = A28(x —x")8(¢ —1') . '

Thus pouring grains onto a sandpile should be represent-
ed by only noise in p; alternatively one might imagine
that the sandpile is being subjected to vibration at its
base, the chief effect of which is transmitted to the sur-
face clusters via the bulk, which hence have only noise in
h. For the moment, we consider both noise terms to be
present.

These equations contain the first local and analytical
formulation of a model presented much earlier [15], in
their explicit demonstration of the competition and
cooperation between independent-particle and collective
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dynamics in a sandpile subjected to perturbation; the
ideas in that model, however, have been analyzed sys-
tematically by other numerical and theoretical methods
for a number of years [15,16,19,20,22]. As expected,
apart from exceptional regimes where one or the other
dominates, these mechanisms have an explicit coupling
which is encapsulated in the transfer terms T, originating
in the fact that currents of flowing grains must undergo a
constant exchange of particles with the clusters in the
boundary layer [15].

To close this presentation of our dynamical equations,
we briefly present their explicit solution in the absence of
noise. Let the initial situation be that of a uniform slope
p=—p.+e of immobile grains: y(x,0)=px, i.e.,
h(x,0)=¢gx, together with a constant density of mobile
particles: p(x,0)=p,. We thus have a uniform Vi =e¢. In
the subsequent evolution this slope remains constant, and
the amounts of mobile and immobile particles are related
by the conservation law h(x,t)=h(x,0)+py,—p(¢). The
evolution of p(t) crucially depends on the sign of ¢, as fol-
lows.

(i) Subcritical case (|p| <p,, i.e.,, €>0): the density of
mobile particles relaxes exponentially to zero, according
to

—(A+p)®!

p(t)=pge (2.7a)

(i) Supercritical case (|p| > p,, i.e., € <0): the density of
mobile particle diverges exponentially, according to

p(6)=—p,+(po+py)e (2.7b)

with p;=v/pu.
(iii) Critical case (|p|=p,, i.e., e=0): the system is en-
tirely frozen:

P(t)zpo . (2.70)

The dynamics in the critical case is thus driven by the
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fluctuations generated by the noisy source terms. It is
worth noting that the characteristic times associated
with the relaxation law (2.7a) and with the law of diver-
gence (2.7b) both diverge as 7~ 1/]el, as the critical slope
€=0 is approached.

III. CRITICAL BEHAVIOR

This central section is devoted to an investigation of
the rich variety of behavior shown by our dynamical
equations in the presence of noise. Let us emphasize the
following. First, we do not need to introduce overly com-
plicated terms to induce a change in universality class; a
simple, physically motivated description of the physics of
clusters and grains on a flowing sandpile suffices to give
us critical exponents. At a deeper level this indicates that
we have added physics to the linear equation for 4 (EW)
which takes us away from the trivial fixed point, and
confirms that our nonlinear decorations of the EW equa-
tion as well as the coupling we have introduced between
h and p is physically meaningful.

Next, it turns out that the most important ingredient
in our dynamical equations is the tilt term w(Vh)_
describing the physics of tilting a pile so that, quite sim-
ply, clusters of grains which appear frozen and stationary
when the pile is horizontal release grains which flow
down the pile when tilted. However, this is not the only
term that changes universality classes. For instance, as
discussed below, the effect of symmetry between x and
—x, and different combinations of the noise terms induce
changes of universality class. These phenomena will be
discussed under the relevant headings of this section; the
corresponding estimated critical exponents are listed in
Table I and shown in Fig. 3.

More specifically, in order to obtain an idea of which
terms of our equations are the most relevant, in the sense
of the renormalization-group approach to critical phe-
nomena, we can use the arguments of dimensional

TABLE I. Critical exponents a, B, and z for both fields h(x,¢) and p(x,t), measured from numerical
simulations in the various cases described in text. The exact EW and KPZ values are recalled for com-
parison. The asterisk means that the exponent z cannot be accurately evaluated from the available data

on a and B.

Model Species a B z
EW h 3 T 2
KPZ h % % 372
(1) asymmetric h 0.941+0.07 0.43+0.04 2.2+0.4
noise in A P 0.22+0.08 0.07+0.02 *
(1a) no-tilt h 0.36+0.02 0.41+0.08 0.9+0.2
noise in 4 and in p P 0.39+0.05 0.27+0.04 1.4+0.4
(2) asymmetric h 0.80+0.06 0.42+0.07 1.9+0.4
noise in p P 0.33%+0.10 0.19+0.04 1.7£0.9
(3) asymmetric h 0.97+0.07 0.45+0.03 2.2+0.3
noise in k4 and in p P 0.12+0.08 0.07+0.03 *
(4) symmetric h 0.4010.06 0.374+0.04 1.1+0.3
noise in A
(5) symmetric p 2
noise in p 1 1
(6) symmetric h 0.37+0.05 0.39+0.05 1.0+0.2

noise in h and in p
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analysis referred to as power counting [23]. For the sake
of clarity, we first perform this perturbative analysis on
the KPZ equation,

dh /3t=DV*h +g(Vh ) +n(x,t) . (3.1)

We rescale space according to x—bx, and time accord-
ing to t—b?%, with z being the unknown dynamical ex-
ponent. We make the natural hypothesis that the noise
n(x,t) is dimensionless, in the sense that its width A,
defined in analogy with Eq. (2.6), is independent of b.
We can then determine iteratively the power of the linear
scaling factor b which affects every quantity or parameter
of the model under rescaling, in any dimension d. By
definition, the negative of this power is called the (classi-
cal or naive) dimension of the quantity under considera-
tion. Starting from the dimensions [x]=—1, [t]=—z,
and [A]=0, we obtain

[h]=(d —2z)/2, [D]=z—2, [g]=(3z—d—4)/2.

(3.2)

The general ideas of the renormalization-group approach
imply that an operator is relevant (irrelevant) whenever
the dimension of the associated coupling constant is posi-
tive (negative).

(i) Consider first the linear (EW) theory, obtained for
g =0. This linear theory is scale invariant for [D]=0,
thus z =2. We thus recover the known scaling properties
of the EW theory, in particular [A]=(d —2)/2, thus the
EW exponents a=[h]/[x]=(2—d)/2, and B=[h]/[t]
=(2—d)/4.

(ii) Consider now the full KPZ theory. With z=2 we
have [g]=(2—d)/2, implying that a weak nonlinearity is
irrelevant for d >2, and relevant for d <2, so that the
perturbative critical dimension reads d.=2. These pre-
dictions agree with the known phase diagram of the KPZ
problem, with its weak-fluctuation fixed point for d <2,
and its nonperturbative scaling behavior for d =2. This
kind of power-counting analysis is, however, unable to
predict that the KPZ exponents are nontrivial in any
finite dimension, due to nonperturbative effects [9,10,24].

The power-counting analysis of our dynamical equa-
tions (2.2) goes as follows. Under the assumption that the
noise is again dimensionless, starting from [x]=—1,
[t]=—z and [A,]=[A,]=0, we obtain

[R]=[p]=(d —2)/2,[D,]=[D,]=2z -2,
[vl=z—1, [A]l=[u]=3z—d—2)/2,
(k]=[v]=0Bz—d—4)/2 .

(a) The pseudolinear theory obtained for
k=A=p=7y =0 is formally scale invariant if we set z=1.
We then have a mean-field-like scaling with [v]=0,
where diffusion is irrelevant, since [D,]=[D,]=—1.
The other mean-field exponents read a,=pf,=[h]/[x]
=(1—d)/2, and similarly for p.

(b) The fully theory then has critical dimension d. =1,
where we have [A]=[u]=0 (marginal) and [«k]=[y]
=[D,]1=[D,]=—1 (irrelevant).

Perturbation power counting is even more questionable

(3.3)

in the present case than for the KPZ problem, since our
pseudolinear dynamical equations are already fully non-
linear. The mean-field-like scaling exponents mentioned
above may well not be observable in any dimension. It
nevertheless provides a hint concerning which perturba-
tions are likely to be the most relevant ones.

We now discuss some general information about the
numerical simulations which yield the results discussed
below. The simulations have been performed by discre-
tizing Egs. (2.2) both in space and time. Since we are
mainly interested in critical behavior, we have set the
step in the spatial direction, i.e., the lattice spacing, equal
to unity (8x =1). We have employed a finite system of
size L lattice points, with periodic boundary conditions.
The discretization in the temporal direction requires
more care, because of the strong instabilities which are
intrinsically present in nonlinear growth equations in
discrete time. Just as previous authors [25], we have had
to use currently small values of the time step, of order
8¢=1073, in order to avoid instabilities, and to generate
physically acceptable, well behaved, and stable solutions
to our equations.

For each of the cases detailed below, we have calculat-
ed the exponent of both 4 and p at criticality. The ex-
ponents a and B are a priori different for both species,
whereas a common value of the dynamical exponent
z is expected. The actual evaluation of the expo-
nents has been done by means of the structure factors
S,(g,w) and S p(q,co), which are defined as the double
Fourier transforms of the correlation functions
G,(x—x',t—t")=(h(x,t)h(x’,t")) and G (x —x',t —t')
=(p(x,t)p(x",t')). The scaling laws (1.2) and (1.1), re-
called in the Introduction, can be recast, respectively, as

S(g,0)=~w 'qg 1 "d(w/q?) (3.4)
for small g and @, and especially
S(q,0)~q 172 (¢g—0),
(3.5)

S(0,0)~w 172 (0—0).

A. Asymmetric situation (cases 1-3)

This situation is the most commonly encountered one,
of a (sloping) sandpile with a preferred direction of flow;
our original presentation of these equations concerned
this case [1], and the pertinent equations are Egs. (2.2).
We refer to it as the asymmetric case because it describes
the physics of fluctuations with respect to a uniform slope
—p,, so that there is no x<>—x symmetry.

In numerical simulations we have set the irrelevant
couplings ¥ and x equal to zero, and chosen D, =D, =1.
The transfer term T deserves some more attention. The
effect of the term Ap(Vh),, as mentioned above, is to
limit the fluctuations of p around its finite mean value of
order {p)~v/A. Critical fluctuations can therefore only
develop for v>>A. We choose to set A=1 and u=0
(again for simplicity), keeping v>>1 as a free parameter,
besides A, and AP. In practice, values of v of order
10-50 turn out to be large enough in order not to alter
the critical fluctuations, for sizes (L < 1000) and observa-
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tion times (¢ <10°) actually used in our numerical simu- -

lations.
The dynamical equations thus read

dh /3t=V?h —T +n,(x,t)
Cases 1-3: 6p/8t=V2p+T+17p(x,t)
T=—p(Vh),—v(Vh)_ .

(3.6)

We have considered the following three cases, accord-
ing to the nature of the noise: (i) Case 1: noise in
h (A, >0,A,=0). (ii) Case 2: noise in p (A, =0,A,>0).
(iii) Case 3: noise in 4 and p (A, >0,A,>0).

Nontrivial long-range spatial and temporal critical
fluctuations are observed for both species 4 and p in these
three cases, as illustrated for case 1 on Figs. 1 and 2. Fig-
ure 1 shows log-log plots of the spatial structure factors
against reduced wave vector q/(2w), whereas Fig. 2
shows log-log plots of the temporal structure factors
against frequency @ /(27). In each case we have estimat-
ed the critical exponents a and B for both species by
fitting log-log plots of the structure factors (those present-

a, =0.94+0.07
11 1 T T T T T
8t _ ]
) .
=
m’n J
: .
sL * L=1000 N ]
= L=1600 %
1
( .

-55 -50 -45 -40 -35

In (q/2m)

2 ! 1
-70 -65 -6.0

a =0.22+0.08
7.5 - £ : .

5.0

4.5

4.0 1 1 1 1
-6.0 -5.5 -5.0 -4.5 -4.0

In (q/2m)

FIG. 1. Log-log plot of the spatial structure factors of case 1,
against reduced wave vector g /(2m): (a) S,(g,0). The fitted line
has a slope —1—2a;, = —2.88%0.14. (b) S,(¢,0). The fitted line
has a slope —1—2a,= —1.44+0.16.

-3.5
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ed in Figs. 1 and 2 and similar ones for the other cases) to
straight lines, according to Eq. (3.5). The data for several
different system sizes and observation times are well fitted
to a single power law. Table I gives our estimates for the
critical exponents, as well as estimates for the corre-
sponding error bars, incorporating statistical errors as
well as systematic ones, the latter being necessarily evalu-
ated in a rather subjective way. Figure 3 shows a scatter
plot in the a-B plane of the numerical values of all these
critical exponents.

We postpone the general analysis of these exponents to
Sec. IV, and now discuss the specific cases. Case 1 is of
particular interest, as it is the most directly comparable
with EW and KPZ. We observe a rougher behavior of
the h profile than the two aforenamed. This effect is very
pronounced in the spatial direction (o, =~0.94 is to be
compared with 1 in both cases), and still appreciable in
the temporal one (B, =~0.45 is to be compared with } and
+- Intuitively, this appears to be due to the roughening
effect of the tilt term, whose chief role is to cause a gen-
eration of flowing grains at points of excessively high

8, =0.43+0.04

T L T T T T

In (w/2m)

g =0.07+0.02
11 T T 2 T T T T

(0.0)

8

InS

5

-12 -5

In (w/2m)

FIG. 2. Log-log plot of the temporal structure factors of case
1, against frequency w/(27). (a) S,(0,w). The fitted line has a
slope —1—2f3,=—1.86+0.08. (b) S,(0,w). The fitted line has
aslope —1—2B,= —1.141+0.04.
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1

0.6 0.8 1.0 12
o3

FIG. 3. Plot of the numerical values of the critical exponents
listed in Table I in the a-B3 plane. The lines z=a/B=1 and
z=a/B=2 are meant as guides to the eye.

slope on the surface. The effect is thus of an enhanced
deposition, so that we expect the values of the exponent
By to lie between + (deposition and relaxation) and }
(deposition only, no relaxation). This is indeed what we
have measured. However, given that the roughening
effect appears to manifest itself more directly in the tem-
poral exponent, since a¥PZ=qEV put BEPZ > BEV we will
restrict ourselves to discussing it in this context.

In order to check further the validity of the above in-
tuitive idea, we compare 3, in this case with that of the
model where the tilt term is replaced by a noise in p. In
this situation, referred to as case la, the dynamical equa-
tions read

dh /3t =V*h —T +mn,(x,t)
Case la: 13p /3t =V’p+T+1,(x,1)
T=—pupVh .

(3.7)

We find that, indeed, 3, is unchanged, within error bars,
with respect to case 1 (and, as it turns out, cases 2 and 3
as well) verifying that the role of the tilt term is analo-
gous to that of a local generator of flowing grains, i.e., a
noise in p.

We mention that, for the purpose of numerical stabili-
ty, we have actually replaced the transfer term T of Eq.
(3.7) by an odd nonlinear function 7°=F (T) of the same
quantity, linear at small T and saturating at large T; we
have chosen

—1 for T<—1
F(T)=i{T for —1<T=<1 (3.8)
1 for T>1

in order to achieve a fast numerical evaluation.

Case 2 describes the situation of a noise in p, in the
presence of tilt. This corresponds to the case of pouring
grains onto a sandpile, whereas case 1 corresponded to
shaking one. In order to initiate nontrivial dynamics, we
have to subject the pile to a transient noise in 4 for a
period (0<t<t,). The exponents in this case show a
small, although perhaps significant, difference from the

previous case. The p exponents are slightly larger than
previously, while the 4 exponents are smaller than in case
1. Intuitively, this should be expected, since in this case
the major perturbation corresponds to a deposition of
flowing grains. However, and somewhat surprisingly, we
still see that the 4 exponents in this case are larger than
the corresponding p exponents. Our tentative explana-
tion for this is that, whatever the nature of the noise, the
transfer term T predominates; thus, while the difference
in the noise terms accounts for the relative values of, say
Bp, in cases 1 and 2, the nonlinear couplings in T ensure
that, in any given case, B, >,. Another way of saying
this is that our dynamical equations result in a sandpile
surface whose roughness is due more to embedded clus-
ters than flowing grains, which is clearly sensible; also, a
comparison of cases 1 and 2 shows that shaking the pile
is a more efficient way of generating roughness than
pouring grains down it, which also seems intuitively plau-
sible.

These speculations are reinforced to some extent by
case 3, which corresponds to noises in 4 and p. Within
error bars, we observe no significant difference between
this case and case 1 (noise in A alone), indicating that
noise in p does not materially affect the situation of a
noise in A in the presence of the tilt term. In other words,
once we have generated the maximal roughness of the
pile by shaking its clusters, we will not materially change
the observed roughness of the surface by, in addition, de-
positing grains on it.

We have so far expressed all the surface heights as de-
viations from one unique critical slope —p,. However,
we know [1-3] that there is in reality a range of angles of
repose for a sandpile, and we should have included these
to describe the different thresholds for the onset and con-
tinuation of avalanches. We propose to do this via the in-
troduction of a threshold C, both in the tilt and current
terms. The incorporation of two thresholds p, and C in
our equations models the situation in real sandpiles,
where the former corresponds to the minimum angle of
repose (onset of avalanches), and the latter to the max-
imum angle of stability (threshold for continuous
avalanching). We thus write

dh /3t =D,V?h —T+mn,(x,t),
3p/3t=—Vj+D,Vp+T+n,(x,t), 5.9)
T=—xpV?h —Ap(Vh+C), —upVh —v(Vh)_ ,
i=—yp(Vh+C)_ .

The threshold C can be viewed as an extra coupling con-
stant; its dimensional content as dictated by power count-
ing reads [C]=(d —z+2)/2=(d +1)/2 with the mean-
field-like dynamical exponent z=1. The introduction of
a nonzero threshold thus drives the system away from
criticality, at least within the perturbative power-
counting approach. This prediction has been confirmed
by numerical simulations, which show a definite cross-
over to noncritical fluctuations when C is switched on in
a progressive way.

From a more physical point of view, this implies that
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the introduction of the second threshold C takes our sys-
tem away from the critical behavior of a second-order
phase transition to the more realistic first-order behavior
characteristic of real sandpiles [1-3]. Our choice of the
simplified critical equations in this paper was made for
the simple purpose of demonstrating the critical exponent
we obtain, and so showing the validity of the physics we
have included; this being done, we emphasize that in any
experimental application, the full equations (3.9) with two
thresholds should be used.

B. Symmetric situation (cases 4—6)

We now turn to the analysis of a version of our dynam-
ical equations which has the x<»>—x symmetry. This can
be visualized as the surface of a sandpile which is flat on
average, and is subject as before to deposition and/or
shaking. Physically this represents an important
difference in that flow is allowed in both directions, un-
like in the previous case of a background slope, where
gravity imposes a preferred direction for grain flow. The
dynamical equations in full generality read

dh /3t =D, V*h —T+n,(x,t)
dp/dt=—Vj+D,V’p+T+n,x,t)
T=—kpV*h —Ap|Vh|+v(|VR|—C)
ji=vpsgn(VA)|VhR|—C), .

Cases 4-6: (3.10)
+

In order to investigate the critical regime, we choose to
simplify the above equations for y =C =0 as

dh /3t=V*h—T+n,(x,t) ,
dp/3t=V’p+T+n,(x,t),
T=—pV?h+(v—p)|Vh]| .

(3.11)

An inspection of Eq. (3.10) shows the effect of sym-
metrizing the tilt term; a finite value of the local slope
now indicates a deviation from the equilibrium flat sur-
face, so that it is the absolute magnitude of the local slope
which results in immobile clusters being converted to
flowing grains. This symmetrization applies equally to
the other term in T, which arranges for cluster-grain ex-
change depending on V2h rather than Vh. We again con-
sider three cases, according to the number of components
of the noise: (iv) Case 4: noise in 4 (A, >O,Ap=0). (v)
Case 5: noise in p (A, =0,A,>0). (vi) Case 6: noise in &
andinp (A, >0,A,>0).

In Cases 4 and 6, we observe a, =~f3, =0.40 and z, =1
within error bars, just as in case la, whereas p(x,¢) does
not exhibit divergent fluctuations: the structure factors
S(q,0) and S(0,w) rather saturate to constant values for
small enough wave vector g or frequency o, implying the
decay of p-p correlations at long separations in space and
in time.

These results show that the dynamics corresponding to
anisotropic and isotropic sandpiles are quite different.
Our interpretation of these results is based on the symme-
try of the pile. While the tilt term still performs its ear-
lier role with respect to ), (which is identical within er-

ror bars to cases 1-3), there is an important difference
between what happens to the flowing grains once they are
released from their erstwhile clusters. With no preferred
direction of flow, we would expect backflow of grains on
a regular basis, contrary to the anisotropic case; thus we
should expect that different clumps of p generated by pos-
sibly anticorrelated bursts of j should have decaying
correlations in space and time. A way of verifying this
conjecture consists in checking j-j correlations in this
case and to compare with the asymmetric case; we have
done this and found, as expected, that j is well correlated
in the asymmetric case (case 1) (corresponding to uni-
directional flow), but is weakly correlated (cases 4 and 6)
in the symmetric case.

Another interesting situation is case 5, where noise is
present only in the equation for p. Just as for case 2, we
have to put noise into 4 too in an initial period. We find
that & becomes frozen, soon after the initial period has
elapsed, into a nontrivial rough landscape, entirely inher-
ited from the transient period, and therefore character-
ized by a roughness exponent a=~0.40. The evolution of
p which then takes place, with this frozen height
configuration as a background, is effectively linear, and
the EW exponents are observed, in spite of the back-
ground. This is actually to be expected by simple physi-
cal reasoning: the effect of pouring flowing grains on a
flat surface (which has no preferred direction of flow for
the flowing grains p) will, after transients, have relatively
little effect on A. In the absence of this coupling, VA rap-
idly approaches a frozen profile across the surface, so
that the tilt term becomes inactive; the only remaining
effect is that buildups of flowing grains are gradually
diffused away across the frozen 4 landscape, leading to
the observed EW exponent of B,={. Note that things
would have been quite different if we had had a coupling
term involving Vp.

IV. DISCUSSION

Before discussing the essential points of our results, we
review the original motivation for this work. Until the
recent spate of interest in sandpiles, the theoretical study
of evolving interfaces has (correctly) focused on dynami-
cal equations which involved only one variable, the local
height of the surface h(x,t) [4,6,7].

Early work on sandpile dynamics, however, showed
the necessity for a grain-cluster coupling; in particular, a
microscopic model was put forward [15], encapsulating
the competition and cooperation between independent-
particle (mobile grains) and collective (clusters or rela-
tively immobile grains) dynamics in a sandpile subjected
to perturbation. The main predictions of that model
were based on the qualititatively and quantitatively
different effects of the two kinds of dynamics on material
properties like the structure; for instance, the faster
(independent-particle) dynamics was expected to lead to
less compact structures which were formed relatively
quickly, whereas the slower (collective) dynamics was
postulated to lead to denser, more stable structures which
took longer to form. These ideas were tested by a com-
bination of numerical and theoretical methods for a num-
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ber of years [15,16], and the results of these investigations
were found to be in good agreement with experiments
[2,3].

Other concurrent developments involved an investiga-
tion of evolving configurational disorder [19] and the
effect of tilt [20]; these further tested the ideas of cluster
reorganizations, demonstrated the configurational hys-
teresis characteristic of these systems [2,3], and showed
the effects of dissipation and inertia. Most crucially,
these investigations provided a quantitative basis for
what had till then been at the level of intuition: the im-
portance of tilt in the cluster-grain exchange process.

These tests accomplished, all of these concepts were
given a local and analytical form, and the first such cou-
pled nonlinear equations involving a cluster-grain ex-
change process were published in a generalized form in
Ref. [1]. We based our choice of the collective coordinate
on earlier work, since the variations of local height A (x,?)
clearly represent configurational fluctuations caused by
changes in cluster shapes and sizes. The coordinate
representing independent particles was chosen to be its
logical embodiment, the local density p(x,¢) of mobile
particles.

The uncoupled terms were chosen so as to represent (i)
pure cluster reorganization (strictly collective relaxation),
and (ii) the reorganization of flowing grains (strictly
independent-particle relaxation).

The coupled terms were chosen to represent (i) inter-
cluster motion initiated by the flowing grains (slope in-
dependent, a representation of inertia), (ii) intercluster
motion mediated by the flowing grains (slope dependent,
representation of evolving configurational disorder and
memory), (iii) spontaneous generation of flowing grains
for larger-than-critical local slopes (effect of tilt), and (iv)
the saturating term for flowing grains released by tilt
(effect of boundary layer).

Our choice of perturbation was likewise general, incor-
porating noise in p as well as 4. In this paper, we have
concentrated on the case of white noise in both species,
and have presented results for each one in isolation, as
well as in combination with the other. We have thus fo-
cused on the cases of uniformly poured, shaken, and
poured and shaken sandpiles. It is worth pointing out,
however, that a simple change in noise characteristics
will generate the case of, say, a sandpile with grains being
poured at a point, or, for that matter, a sandpile being
drained either uniformly or at a point. We leave the de-
tailed exploration of these cases, as well as the investiga-
tion of the effect of different boundary conditions, to fu-
ture work.

In the absence of noise, our dynamical equations
showed the expected behavior: when the slope was below
critical, the current of flowing grains died down, and
their density relaxed exponentially to zero. When the
slope was above critical, the density of mobile particles
exploded exponentially. In other words, as we would ex-
pect, a finite number of mobile grains will, in a supercriti-
cal pile, be able to augment, via the tilt and exchange
terms; in a subcritical pile, on the other hand, any initial-
ly mobile grains will soon find suitable voids to occupy
them, thus becoming part of the clusters in the boundary

layer. The critical nature of the critical slope is clearly
apparent from the divergence of the characteristic times
associated with relaxation or explosion, both above and
below criticality.

The most detailed investigations in our paper con-
cerned the critical state in the presence of noise. We
found nontrivial critical exponents in a number of
different cases; this convinced us that our phenomenolog-
ical attempts to model sandpile surfaces had succeeded in
adding physics to the linear equations for 4 in that our
leading nonlinearities have been found to be relevant.
Figure 3 demonstrates an evident clustering of the ex-
ponents concerning h. This observation leads us to the
hypothesis that there is, in a first approximation, a single
independent exponent a'!*~0.40, such that we have

Cases 1, 2, and 3: a,=~2a'"", B,=a', z=2,

tilt @1

Cases la, 4, and 6: o, =, =« z=1

We definitely cannot rule out the existence of a fine struc-
ture, i.e., of small differences between the exponents of
various cases in each of the two broad universality classes
mentioned above. The situation of the exponents related
to p is less clear. Furthermore, we are unable to compare
the nontrivial values of exponents with predictions exist-
ing in the literature, since, to our knowledge, no similar
coupled nonlinear equations, which are nontrivial in their
criticality behavior and correspond directly to similar
physical situations, have so far been investigated.

In case 1, which was most directly comparable with
EW and KPZ, that of a sandpile on a slope in the pres-
ence of vibration, we observed a roughening of the sur-
face compared to the two above. We speculated that this
could be due to the roughening effect of the tilt term
which acts as a local generator of flowing grains in areas
of excess slope; and crudely tested this hypothesis by
comparing the temporal exponent 3, with that obtained
in case la (coupled equations in the absence of tilt, with
two noises). That verified, we feel justified in claiming
that the presence of tilt in this case is responsible for ob-
taining rougher surfaces than in either EW or KPZ.

Let us examine the implications of cases 2 and 3 next:
everyday experience tells us that if we want to create a
pile with a rough surface, shaking would be a more
efficient way to do this compared to pouring. The reason
is that shaking directly affects cluster shapes on the bulk
and surface, whereas pouring would in general tend to
cause grains to flow down the pile. In the parlance of
previous work [1], a noise in A predominantly affects the
collective motion of clusters, whereas a noise in p
predominantly affects the motion of independent grains.
Also, since clusters are in general able to sustain rough-
ness more than moving grains, we would expect that the
roughness exponents of the former would exceed those of
the latter species. We indeed find that, in all of the cases
of interest (1-3), 3, >Bp; and that in case 2 (correspond-
ing to a noise in p alone), while the roughness of the A
landscape is suppressed, the roughness of the p landscape
is not overwhelmingly enhanced. Also, cases 1 and 3 are
not materially different, showing that the process of
deposition of flowing grains does not make much
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difference to the roughness profile of a sandpile that has
already been subjected to shaking. It is remarkable that,
although we have in no sense built in these features into
our equations, we appear to obtain a physically desirable
and meaningful behavior from them.

Let us emphasize that in the discussion above we refer
only to temporal roughening, as will be obvious from the
fact that we have discussed only the 3 exponents in all
the cases. For instance, the effect of the tilt term in case
1 is to generate a surface whose correlations in time are
greatly enhanced compared to EW or KPZ. The case of
the a exponents, i.e., the issue of spatial correlations as a
function of distance, is altogether more complex and sub-
tle. For example, there is a considerable controversy re-
garding whether sandpiles are asymptotically rough or
smooth in the spatial sense: proponents of smooth sur-
faces argue that sand dunes in deserts are extremely
smooth, and theoretical work by Hwa and Kardar [12]
support this claim. On the other a hand, we obtain large
values of a; also, Bouchaud et al. [21] find that their sur-
faces are characterized by the trivial exponents of the
linear EW theory, leading them to conclude that their
surfaces are asymptotically rough. In addition, our re-
sults for case 1 show remarkable agreement with experi-
mental work [26] on rotated and shaken sandpiles, where
measured exponents of a,=0.92+0.05 and [, =0.48
10.16 are in close agreement with case 1 of Table I. Our
tentative suggestion is that this controversy may be
resolved if more careful consideration is given to the oth-
er processes at work on the sandpiles concerned; for in-
stance, in a windless desert, dunes may tend to manifest
relatively little roughness, whereas the presence of wind
or another perturbing fluid would cause the dynamical
effects inherent in our equations to predominate and
cause greater spatial roughness.

So far, the universality classes we have obtained were
for a sloping pile, corresponding to different combina-
tions of noise. We felt that, in analogy with other critical
phenomena, symmetry could also be an important factor
in determining universality classes. For this reason we ex-
amined the effect of deposition and/or shaking on a flat
surface, where the important physical difference is that
the bidirectional flow of mobile grains is allowed in the
absence of a biasing slope. One would expect intuitively
that, in the absence of noise, this would lead to the p
correlations becoming much weaker, if not disappearing
altogether. Cases 4 and 6 show that this is indeed the
case. In case 5, the absence of a noise in 4 causes the h
profile to stop fluctuating after a time; the tilt term be-
comes inactive, and the noise in p generates a diffusive
response from the flowing grains across the frozen (but
still rough) A landscape.

Next, we discuss the issue of thresholds, known to be
important for the hysteretic and bistable behavior of
sandpiles [2,3]. It is well known that sandpile dynamics

shows behavior which is more characteristic of a first-
order phase transition than the critical behavior corre-
sponding to a second-order phase transition [1-3]. This is
why our dynamical equations (3.9) were written down
with two thresholds, one corresponding to the onset
(minimum angle of repose) and the other corresponding
to the continuation (maximum angle of stability) of
avalanches. However, given the phenomenological na-
ture of our work, we wanted to provide hard evidence
that the nonlinear decorations we had added to our linear
coupled equation were meaningful physical additions,
rather than vacuous and needless complications. It was
for this purpose that we simplified Eqgs. (3.9) to their
second-order form (2.2) to look for critical exponents
which we have presented in this paper. This done, we
emphasize our preference for the first-order form of the
equations in terms of modeling physical reality.

Before summing up, we return to the subject of tilt,
which has formed a leitmotif for our work. Although it
might appear from our stack of critical exponents and
their obvious connection to the tilt term that this was a
sufficient raison d’étre for the latter, we emphasize that a
very important feature resulting from its inclusion has to
do with experimental work. The rotating cylinder ap-
paratus has been used for a very long time [27] to investi-
gate sandpile dynamics, and its use remains popular with
experimentalists to this day [3]. Clearly, the driving force
in this setup is the constant tilt to which the sand in the
cylinder is subjected, so that a modeling of the effect of
tilt is essential in any equations which seek to interpret
such experiments. For us, the successful inclusion of tilt
in our dynamical equations brings with it the enormous
potential benefit of being of use in interpreting such a
massive body of experimental work.

Finally, we summarize our work. We have presented a
set of phenomenological equations to model the dynamics
of sandpile surfaces. These include nonlinear couplings
to represent the constant transfer between relatively im-
mobile clusters and mobile grains, incorporate the pres-
ence of tilt, and contain representations of inertia and
evolving configurational disorder, which a previous body
of work [1] has shown to be important. We have looked
at the response of these equations to different perturba-
tions, and presented our critical exponents for these, both
in the presence and absence of a biasing slope. It is our
hope that this work will lead to further detailed experi-
mental and theoretical investigations in this very exciting
and topical field.
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